MONDAY, FEBRUARY 11th

DO NOW

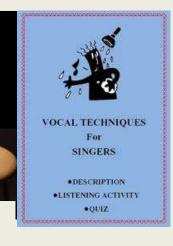
- In your notebooks, to be checked, solve this problem...
- There are 2 Oxygen in 1 Carbon Dioxide (CO₂). These are units of Chemistry!

Know:

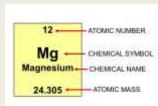
$$20 = 1CO_2$$

Asked: How many atoms of Oxygen are in 7 Carbon Dioxide Molecules?

TODAY'S PLAN


- 1. Do and review the **DO NOW** and **Qualitative Prompt** (**QP**)!
- Today's **QP** = <u>QP BOOK REVIEW</u> = <u>Using Pg. 184-185 of your book</u> <u>SKETCH the "Electron Cloud", "Space-filling" and "BOHR" Models of the Atom and then DEFINE the term "Valence Electron"!</u>
- 2. Open books, WORK on today's AO!
- 3. ***HW** = Finish Jot Down Notes!

TODAY'S ACADEMIC OBJECTIVE


Today you will use information about a Chemical Element for use in BRINGING a 2-D Atomic Model into three dimensions!

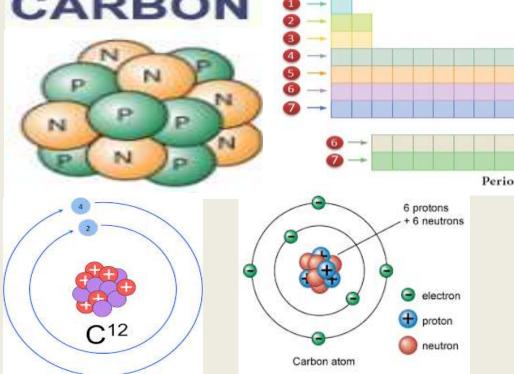
SCIENCE QUIZALERT

- Students, listen UP!!!
 - We will be having a **MOCAL QUIZ** on to help us LEARN the Chemical Symbols for some COMMON Chemical Elements!
 - This quiz will require you to STUDY your Periodic Tables!
 - You are responsible for learning the NAME that goes with these 24 Chemical Element SYMBOLS!
 - Li, Be, Sr, Ba, Ti, Zr, V, Cr, Mo, Co, Ir, Pu, Cd, B, Ga, Ct, Ge, As, Sb, Bi, Se, Br, At, Xe!

SCIENCE QUIZALERT

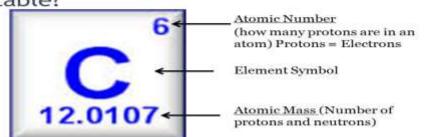
1		Periodic Table of the Elements													18		
H Hydrogen	2											13	14	15	16	17	He Hellum 4.003
Li Lithium 6.941	Be Berythum 9.012											B Boron 10.811	Carbon 12.011	7 N Nitrogen 14.007	Oxygen 15.999	F Fluorine 18.998	Ne Neon 20.180
Na Sodium 22.990	Mg Magnesium 24.305	3		5	6	7	8	9	10	11	12	Al Aluminum 26.982	Si Silcon 28.086	P Phosphorus	S Sulfur 32.066	CI Chlorina 35.453	Ar Argon 39.948
K Potassium 39.098	Calctum 40.078	Sc Scandium 44.956	Ti Titanium 47.967	23 V Variadium 50.942	Cr Chromlum 51,996	Mn Manganese 54.938	26 Fe Iron 55.845	Co Cobalt 58.733	Ni Nickel 58.693	Cu Copper 63.546	Zn Zinc	Ga. Gallum 69,723	Ge Germanium 72.613	As Arsunic 74.922	Se Selentum 78.971	Br Bromine 79.504	Kr Krypton 83.798
Rb Rubildium 84.468	Sr Strontlum 87.62	Y Ytterlum 88.906	Zr Zirconium 91.224	Nb Niobtum 92.906	Mo Molfiedenum 95.95	Tc Tc Technetium 98.907	Ru Ruthenium 101.07	Rh Rhodium	Pd Palladium 106.42	47 Ag Silver 107.868	Cd Cadmium 12414	49 In Indium II4.818	50 Sn Tin 118.711	Sb Antimony 121.760	Te Tellurium 127.6	53 lodine 126.904	Xe Xenon 131.294
Cs Cestum 132.905	56 Ba. Barlum 137,328	57-71 Lanthanides	72 Hf Hafnlum 178.49	Ta. Tantalum 190.948	Tungsten 183.84	Re Rhenium 186.207	76 Os Osmlum 190.23	Ir Ir Iridium 192.217	Pt Ptatinum 195.085	79 Au Gold 196.967	Hg Mercury 200.592	TI Thallium 204.383	82 Pb Lead 207.2	Bi Bismuth 208,990	Po Polentum [208,982]	At Astatine 209.987	Rn Radon 222.018
Fr Francium 223.020	88 Ra Radium 226.025	89-103 Actinides	Rf Rf Retherbritan [261]	Db Dubnium [262]	Sg Seaborgium [266]	Bh Bohrlum [264]	Hs Hs Hassium [269]	Mt Mt Meltnerium [268]	Ds Ds Darmataditum [269]	Rg Roentgenium [272]	Cn Copernictum [277]	Ununtrium unknown	FI Fil Flerovium [289]	Uup Ununpentum unknown	LV Lv Livermorium [298]	Uus Unurseptum unknown	

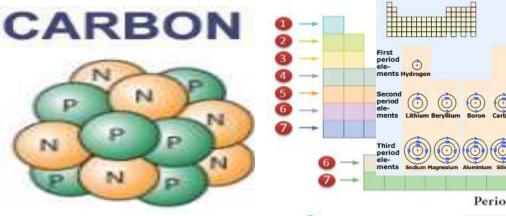
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum	Certum	Pranecdymium		Promethium			Gadolinium		Dysprosium	Holmium	Erbium	Thultum	Ytterblum	Lutetlum
138.905	140.116	140.908	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thortum	Protactinium	Urantum	Neptunium		Americium		Berkeltum	Californium					Lawrenclum
227.028	23/2.03/8	231.036	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

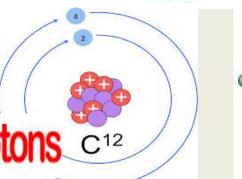

- One way to represent Atoms of an Element is to draw a "Bohr Model" for the Element!
- To draw a Bohr Model for the first 18 or so Elements follow these simple steps!
 - 1. First, using the Periodic Table, write down the number of Protons, Neutrons, and Electrons in the Atom!
 - 2. Then, draw circles with p or + inside for the Protons and n or 0 inside for the Neutrons found together in the Nucleus!
 - 3. Next, count down to the Period (ROW) the Element is found in and DRAW Rings/Orbits around the Nucleus equal to that number!
 - 4. Finally, using the 2-8-8 RULE add in the number of Electrons to finish your Bohr Model!

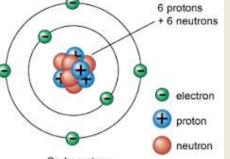
How do we find the number of protons, neutrons, and electrons are in an element by using the periodic table?

Atomic Number (how many protons are in an atom) Protons = Electrons


Element Symbol

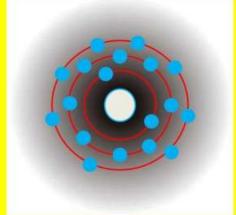

Atomic Mass (Number of protons and neutrons)




- One way to represent Atoms of an Element is to draw a "Bohr Model" for the Element!
- To draw a Bohr Model for the first 18 or so Elements follow these simple steps!
 - 1. First, using the Periodic Table, write down the number of Protons, Neutrons, and Electrons in the Atom!
 - 2. Then, draw circles with p or + inside for the Protons and n or 0 inside for the Neutrons found together in the Nucleus!
 - 3. Next, count down to the Period (ROW) the Element is found in and DRAW Rings/Orbits around the Nucleus equal to that number!
 - 4. Finally, using the 2-8-8 RULE add in the number of Electrons to finish your Bohr Model!

How do we find the number of protons, neutrons, and electrons are in an element by using the periodic table?

- One way to represent Atoms of an Element is to draw a "Bohr Model" for the Element!
- To draw a Bohr Model for the first 18 or so Elements follow these simple steps!
 - 1. First, using the Periodic Table, write down the number of Protons, Neutrons, and Electrons in the Atom!
 - 2. Then, draw circles with p or + inside for the Protons and n or 0 inside for the Neutrons found together in the Nucleus!
 - 3. Next, count down to the Period (ROW) the Element is found in and DRAW Rings/Orbits around the Nucleus equal to that number!
 - 4. Finally, using the 2-8-8 RULE add in the number of Electrons to finish your Bohr Model!


What is the 2-8-8 Rule?

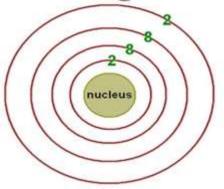
2-8-8 Rule

Electrons orbit the nucleus in energy levels within the electron cloud

Da Rules

- The first energy level can contain ______
 electrons.
- The second and third energy level can contain ____8 ___ electrons.

- One way to represent Atoms of an Element is to draw a "Bohr Model" for the Element!
- To draw a Bohr Model for the first 18 or so Elements follow these simple steps!
 - 1. First, using the Periodic Table, write down the number of Protons, Neutrons, and Electrons in the Atom!
 - 2. Then, draw circles with p or + inside for the Protons and n or 0 inside for the Neutrons found together in the Nucleus!
 - 3. Next, count down to the Period (ROW) the Element is found in and DRAW Rings/Orbits around the Nucleus equal to that number!
 - 4. Finally, using the 2-8-8 RULE add in the number of Electrons to finish your Bohr Model!


What is the 2-8-8 Rule?

2-8-8 Rule

Electrons orbit the nucleus in energy levels within the electron cloud

Da Rules

The "Filling Pattern"

The pattern is 2, 8, 8, 2 for the first four shells.

It is important to realize that this only applies for the first 20 elements.

WEDNESDAY, FEBRUARY 13th

DO NOW

- In your notebooks, to be checked, solve this problem...
- There are about 1.5 feet per second in 1 mile per hour. These are units of Wind Speed!

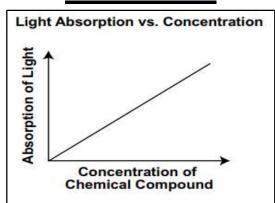
Know:

 $1.5fps \approx 1mph$

Asked: How many miles per hour are in 33 feet per second?

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt** (**QP**)!
 - Today's **QP** = <u>Using your Jot-Down</u>
 Notes DRAW Bohr Models for the
 following ISOTOPES; Hydrogen (1P,
 3N, 1E), Helium (2P, 1N, 2E),
 Carbon (6P, 8N, 6E), AND Lithium
 (3P, 5N, 3E)!
- 2. Open books, WORK on today's AO!
- 3. ***HW** = Draw a Bohr Model for B!


TODAY'S ACADEMIC OBJECTIVE

Today you will MODEL the structure of an Atom by CREATING Bohr...MODELS!

THURSDAY, FEBRUARY 14th

DO NOW

Know:

Asked: What can be inferred from this graph?

A: Less Light is Absorbed as Chemical Compound Concentration Increases

B: Light is made of particles called Photons

C: More Light is Absorbed as Chemical Compound Concentration Increases

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)!**
 - Today's **QP** = <u>WRITE</u> out the following Chemical Formulas then COUNT the number of each Element in each and LABEL which ones are Molecules and/or Compounds; H₂, I₂, 3SF₆, 5N₂O!
- 2. Open books, WORK on today's **AO!**
- 3. * $\mathbf{HW} = \underline{\mathbf{Draw}} \ \mathbf{a} \ \mathbf{Bohr} \ \mathbf{Model} \ \mathbf{for} \ \mathbf{B!}$

TODAY'S ACADEMIC OBJECTIVE

Today you will QUANITFY the Elements in a Molecule by PRACTICING how to COUNT Atoms!

FRIDAY, FEBRUARY 15th

DO NOW

Know: Chemical Elements are **most** likely to react when placed close together and at higher temperatures.

Asked: Which statement gives the **best** conditions for two Elements to react?

A: Na and Cl atoms dissolved in two separate beakers

B: H and O gas atoms pumped into a hot room

C: H and Cl gas near a block of solid H₂O (ice)

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)!**
- Today's **QP** = <u>QP BOOK REVIEW</u> = <u>Using Pg. 185-187 of your book</u> <u>WRITE the GROUP number and the</u> <u>number of VALENCE ELECTRONS</u> <u>in the following Elements; Fr, Be, B,</u> <u>Si, N, O, F, He, AND Xe!</u>
- 2. Open books, WORK on today's AO!
- 3. ***HW** = Read & Do Pg. 186- 187!

TODAY'S ACADEMIC OBJECTIVE

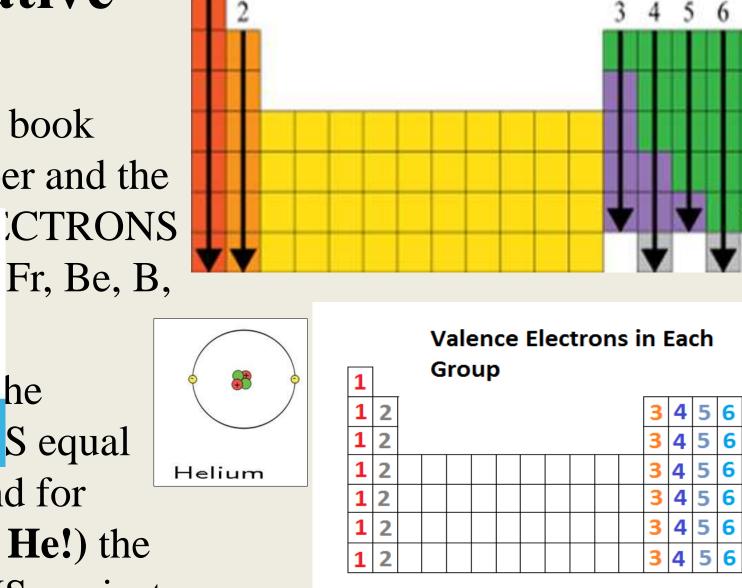
Today you will MODEL the structure of an Atom by CREATING Bohr...MODELS!

Today's Qualitative **Prompt**

Using Pg. 185-187 of your book

WRITE the GROUP number and the

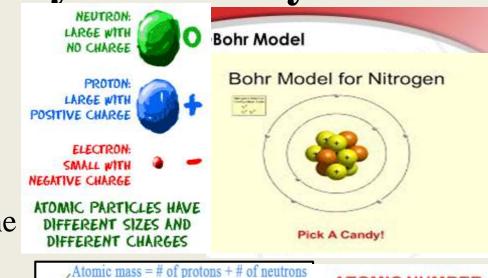
He

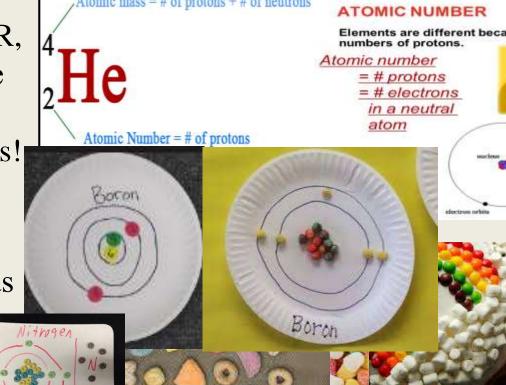

numbe Which is the only noble gas without 8 valence electrons? in the f

Si, N,

Fr, Be, B,

Thus **VAL** S equal the Group NUMBER, and for GROUPS 13-18 (except He!) the VALENCE ELECTRONS are just

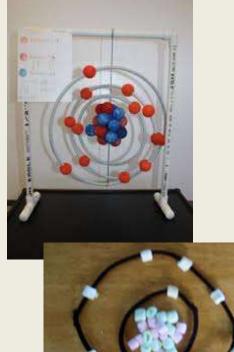

the Group Number MINUS 10!



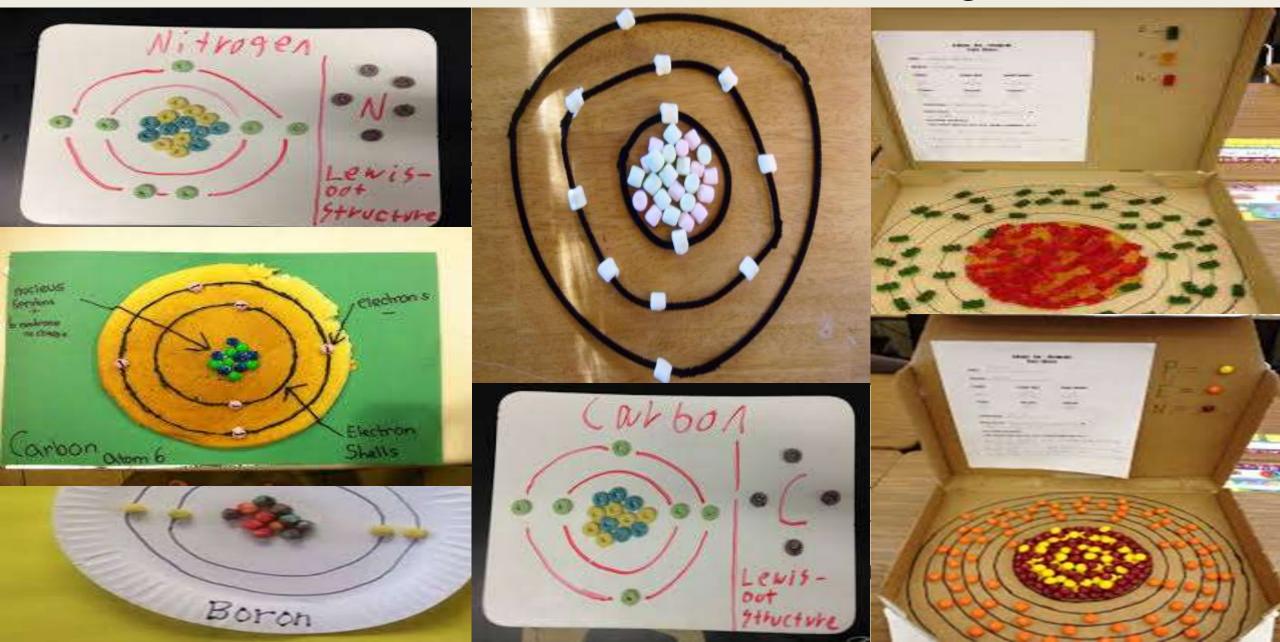
Number of Valence Electrons

Science Artwork Steps – Candy Chemistry

- First, in your Science Notebooks JOT DOWN what a "Bohr Model" is/how to draw one! (I'll need a volunteer to draw one or two on the board for us as well ②)
- 2. Next, pick one of the 3rd Period Elements from the Periodic Table and use your table to WRITE DOWN the number of Protons, Neutrons, AND Electrons it has!
- Then, on a piece of construction paper DRAW, COLOR, and LABEL a "Bohr Model" for the Atom showing the correct NUMBERS and LOCATIONS of Protons and Neutrons in the Nucleus being ORBITED by Electrons!
- 4. Now, COLOR IN each Subatomic Particle with a **DIFFERENT** color!
- 5. Finally, use tape/glue and a "candy-like" object, such as CANDY, Cereal, Pieces of Paper, Bolts, etc. to take Bohr Model from 2-Dimensions into the 3-D!



Science Artwork – Future Notice!


1. NOTE! Upon finishing your Science Artwork
BOHR MODEL, you will have the OPTIONAL
OPTION to earn a little BLUE if you turn your
BOHR MODEL COMPLETELY 3-D!

Science Artwork – HW Problems and Questions

